Self-similarity of solitary waves on inertia-dominated falling liquid films.
نویسندگان
چکیده
We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.
منابع مشابه
Compressive and rarefactive dust-ion acoustic solitary waves in four components quantum plasma with dust-charge variation
Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...
متن کاملSelection of solitary waves in vertically falling liquid films
Two-dimensional solitary waves at the surface of a film flow down a vertical plane are considered. When the system is subjected to inlet white noise, solitary waves are formed after an inception region and interact with each other. Using open-domain simulations of reduced equation models, we investigate numerically their late time process dynamics. Close to the instability threshold, the waves ...
متن کاملNumerical simulation of wavy falling film flow using VOF method
Surface wave dynamics of vertical falling films under monochromatic-frequency flowrate-forcing perturbations is computed by the direct simulation of Navier–Stokes equations using the Volume of Fluid (VOF) method to track free surfaces and the Continuum Surface Force (CSF) model to account for dynamic boundary conditions at free surfaces. The numerical VOF–CSF model is completely formulated, and...
متن کاملInertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations
Spectral stability analysis for solitary waves is developed in the context of the Hamiltonian system of coupled nonlinear Schrödinger equations. The linear eigenvalue problem for a non-self-adjoint operator is studied with two self-adjoint matrix Schrödinger operators. Sharp bounds on the number and type of unstable eigenvalues in the spectral problem are found from the inertia law for quadrati...
متن کاملThe Effect of Dynamic Permeability on Velocity and Intrinsic Attenuation of Compressional Waves in Sand
Stress waves contain useful information about the properties of porous materials; they can be recovered through different non-destructive testing methods such as crosswell, vertical seismic profile, borehole logging as well as sonic tests. In all these methods, it is crucial to assess the effects of frequency on wave attributes including velocity and intrinsic attenuation. The dependency of per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2016